登录TOPS×

*


*

验证码加载中……

请先拖动验证码到相应位置


——  孙  剑  教  授  课  题  组  ——
石皓天 长聘副教授、博导

石皓天 长聘副教授、博导

性别 出生年月 1995-01
最终学历 博士 职称 长聘副教授、博导
E-mail shihaotian95@tongji.edu.cn

阅读()

个人简介

石皓天,男,1995年生,同济大学交通学院长聘副教授,国家优秀青年基金(海外)获得者。博士毕业于美国威斯康星大学麦迪逊分校,拥有交通工程(博士+硕士)、计算机科学(硕士+学士)、动力机械及工程(硕士+学士)等多学位教育背景。

主要研究方向包括智能网联汽车、交通流建模与控制优化、AI赋能智能交通系统、人机智能交互等。已发表高水平学术论文40余篇,其中以一作/通讯在TR Part C/E、IEEE T-ITS、CACAIE、COMMTR等交通\计算机领域顶级期刊发表论文15余篇。公开及授权中美发明专利40余项。在TRB、INFORMS等国际学术会议上作学术报告30余次,入选国家优秀青年科学基金项目(海外)、上海市白玉兰人才计划(海外)。获国家自然科学基金委指导的首届Onsite自动驾驶算法挑战赛高速赛段第三名、威斯康辛智能交通协会奖、IEEE“塑造智能交通未来”一等奖等奖项。担任国际会议ITFT 2024程序委员会委员,世界交通运输大会(WTC)智能云管云控、智能网联与车路协同控制、CAV政策法规等技术委员会国际委员。


研究方向

智能网联汽车、交通流建模与控制优化、AI赋能智能交通系统、人机智能交互等


教育经历

·2020.06–2023.05:威斯康星大学麦迪逊分校,交通工程,博士

·2020.06–2022.05:威斯康星大学麦迪逊分校,计算机科学,硕士

·2019.01–2020.05:威斯康星大学麦迪逊分校,交通工程,硕士

·2017.09–2020.06:天津大学,动力机械及工程,硕士

·2013.09–2017.06:天津大学,计算机科学与技术,学士

·2013.09–2017.06:天津大学,能源与动力工程,学士


工作经历

·2025.04–至今:同济大学,长聘副教授

·2023.06–2025.03:威斯康星大学麦迪逊分校,博士后研究员


研究成果

期刊论文

1.Shi, H., Chen, D., Zheng, N., Wang, X., Zhou, Y*., & Ran, B. (2023). A deep reinforcement learning based distributed control strategy for connected automated vehicles in mixed traffic platoon. Transportation Research Part C: Emerging Technologies, 148, 104019. (SCI, JIF: 7.6, Q1)

2.Shi, H., Zhou, Y*., Wang, X., Fu, S., Gong, S., & Ran, B. (2022). A deep reinforcement learning-based distributed connected automated vehicle control under communication failure. Computer-Aided Civil and Infrastructure Engineering, 37(15), 2033–2051. (SCI, JIF: 8.5, Q1)

3.Shi, H., Zhou, Y*., Wu, K., Wang, X., Lin, Y., & Ran, B. (2021). Connected automated vehicle cooperative control with a deep reinforcement learning approach in a mixed traffic environment. Transportation Research Part C: Emerging Technologies, 133, 103421. (SCI, JIF: 7.6, Q1)

4.Shi, H., Nie, Q., Fu, S., Wang, X., Zhou, Y*., & Ran, B. (2021). A distributed deep reinforcement learning–based integrated dynamic bus control system in a connected environment. Computer-Aided Civil and Infrastructure Engineering, 36(9), 1147–1164. (SCI, JIF: 8.5, Q1)

5.Shi, H., Zhou, Y., Wu, K., Chen, S., Ran, B., & Nie, Q. (2023). Physics-informed deep reinforcement learning-based integrated two-dimensional car-following control strategy for connected automated vehicles. Knowledge-Based Systems, 110485. (SCI, JIF: 7.2, Q1)

6.Shi, H., Dong, S., Wu, Y., Nie, Q., Zhou, Y., & Ran, B. (2024). Generative adversarial network for car following trajectory generation and anomaly detection. Journal of Intelligent Transportation Systems, 28(1), 1–14. (SCI, JIF: 2.8, Q2)

7.Wu, K., Zhou, Y., Shi, H*., Li, X., & Ran, B. (2023). Graph-Based Interaction-Aware Multimodal Vehicle Trajectory Prediction. IEEE Transactions on Intelligent Vehicles, 9(2), 3630–3643. (SCI, JIF: 14.0, Q1)

8.Nie, Q., Ou, J., Zhang, H., Li, S., Lu, K., & Shi, H*. (2024). A Robust Integrated Multi-Strategy Bus Control System via Deep Reinforcement Learning. Engineering Applications of Artificial Intelligence, 133, 107986. (SCI, JIF: 7.5, Q1)

9.Long, K., Shi, H*., Chen, Z., Liang, Z., Li, X*., & de Souza, F. (2023). Bi-scale Car-following Model Calibration for Corridor Based on Trajectory. Transportation Research Part E: Logistics and Transportation Review, 186, 103497. (SCI, JIF: 8.3, Q1)

10.Liu, H., Shi, H*., Yuan, T., Fu, S., & Ran, B. (2024). Bus Travel Feature Inference with Small Samples Based on Multi-clustering Topic Model over Internet of Things. Future Generation Computer Systems, 163, 107525. (SCI, JIF: 6.2, Q1)

11.Long, K., Sheng, Z., Shi, H*., Li, X*., Chen, S., & Ahn, S. (2025). Physical enhanced residual learning (PERL) framework for vehicle trajectory prediction. Communications in Transportation Research, 5, 100166. (SCI, JIF: 12.5, Q1)

12.Ma, K., Shi, H*., Li, X., Ma, C., & Huang, Z*. (2025). Development, Calibration, and Validation of a Novel Nonlinear Car-Following Model: Multivariate Piecewise Linear Approach for Adaptive Cruise Control Vehicles. Transportation Research Part E: Logistics and Transportation Review, 186, 103498. (SCI, JIF: 8.3, Q1)

13.Di, Y., Zhang, W., Ding, H*., Zheng, X., & Shi, H*. (2025). The expressway network design problem for multiple urban subregions based on macroscopic fundamental diagram. Computer-Aided Civil and Infrastructure Engineering, 40(2), 123–140. (SCI, JIF: 8.5, Q1)

14.Shi, H‡., Shi, K‡., Yue, X., Li, W., Zhou, Y*., & Ran, B. (2025). A Predictive Deep Reinforcement Learning Based Connected Automated Vehicle Anticipatory Longitudinal Control in a Mixed Traffic Lane Change Condition. IEEE Internet of Things Journal, 12(3), 4567–4578. (SCI, JIF: 8.2, Q1)

15.Tian, K‡., Shi, H‡., Zhou, Y., & Ran, B. (2025). Physically Analyzable AI based Nonlinear Traffic Dynamics Modeling During Traffic Oscillation: A Koopman Approach. IEEE Transactions on Intelligent Transportation Systems, 26(4), 7890–7902. (SCI, JIF: 7.9, Q1)

16.Wang, J., Dong, J., Shi, H*., Sundaram, S., Labi, S*., Chen, S. Reinforcement Learning Based Mobile Energy Disseminator Dispatching for On-Road Electric Vehicle Charging. Multimodal Transportation. (SCI, JIF: 8, Q1)

17.Liu, H., Wu, K., Fu, S., Shi, H*., & Xu, H. (2023). Predictive Analysis of Vehicular Lane Changes: An Integrated LSTM Approach. Applied Sciences, 13(18), 10157. (SCI, JIF: 2.8, Q2)

18.Shi, K., Wu, Y., Shi, H., Zhou, Y., & Ran, B. (2022). An integrated car-following and lane changing vehicle trajectory prediction algorithm based on a deep neural network.
Physica A: Statistical Mechanics and its Applications, 599, 127303. (SCI, JIF: 2.8, Q2)

19.Liu, C., Sheng, Z., Chen, S., Shi, H., & Ran, B. (2023). Longitudinal control of connected and automated vehicles among signalized intersections in mixed traffic flow with deep reinforcement learning approach. Physica A: Statistical Mechanics and its Applications. (SCI, JIF: 2.8, Q2)

20.Wu, R., Li, L., Shi, H., Rui, Y., Ngoduy, D., & Ran, B. (2024). Integrated driving risk surrogate model and car-following behavior for freeway risk assessment. Accident Analysis & Prevention, 201, 107571. (SCI, JIF: 5.7, Q1)

21.Yue, X., Shi, H., Zhou, Y., & Li, Z. (2024). Hybrid car following control for CAVs: Integrating linear feedback and deep reinforcement learning to stabilize mixed traffic. Transportation Research Part C: Emerging Technologies, 167, 104773. (SCI, JIF: 7.6, Q1)

22.Long, K., Liang, Z., Shi, H., Chen, S., & Li, X. (2024). Traffic Oscillations Mitigation With Physics Enhanced Residual Learning (PERL)-Based Predictive Control. Communications in Transportation Research. (SCI, JIF: 12.5, Q1)

23. Wu, Z., Chen, T., Xie, H., Shi, H., Yang, Z., & Zhao, H. (2019). Optimization of Valve Strategy for High Compression-Ratio Gasoline Engine Operating with Miller Cycle. Journal of Combustion Science and Technology, 25(4), 331–339. (EI, JIF: 1.7, Q3)

24.Dong, H., Shi, H., Wang, G., & Zhao, F. (2012). Skillful use of technology to ensure equipment shape and position tolerance requirements. Journal of Ordnance Equipment Engineering, 33(12), 49–50. (中文核心期刊)


客座讲座:

1.Course CVEN 307 Transportation System at Texas A&M University. “Topic: A deep reinforcement learning-based distributed connected automated vehicle control under communication failure” (2022).

2.Course CVEN 456 Urban Traffic Facilitiesat Texas A&M University. “Topic: A deep reinforcement learning based distributed control strategy for connected automated vehicles in mixed traffic platoon” (2023).


会议论文

1.Chen, T., Shi, H*., Vorhes, G., Parker, S. T., & Noyce, D. A. (2022). How to Collect Tribal Crash Data Properly? Experience from a New Wisconsin Crash Reporting System. ASCE International Conference on Transportation and Development 2022 (pp. 48-60). (Conference Proceedings)

2.Zhou H., Huang H*., Zhang P., Li X*., Shi H., Long K. Online Physical Enhanced Residual Learning for Connected Autonomous Vehicles Platoon Centralized Control. IEEE Intelligent Vehicles Symposium 2024. arXiv preprint arXiv:2402.11468.

3.Ma, C., Zhou, H., Zhang, P., Ma, K., Shi, H., Li, X. Safety Assurance Adaptive Control in Automated Vehicles: A Case Study on Modular Vehicles. 104st Annual Meeting of the Transportation Research Board, Washington.

4.Zhang, P., Zhou, H., Huang, H., Shi, H., Long, K., Li, X. Online Adaptive Platoon Control for Connected and Automated Vehicles via Physical Enhanced Residual Learning. 104st Annual Meeting of the Transportation Research Board, Washington.

5.You, J., Shi, H*., Wu, K., Long, K., Fu, S., Chen, S*., Ran, B. Crossfusor: A Cross-Attention Transformer Enhanced Conditional Diffusion Model for Car-Following Trajectory Prediction. 104st Annual Meeting of the Transportation Research Board, Washington.

6.Ma, K., Zhou, H., Zhang, Y., Shi, H., Ma, C., Li, Z., Zhang, P., Liang, Z., Li, X. Automated Vehicle Longitudinal Stability Analysis: Controller Design and Field Test. 104st Annual Meeting of the Transportation Research Board, Washington.

7.Long, K., Shi, H., Zhou, Y., Li, X. Physics Enhanced Residual Policy Learning (PERPL) for Safety Cruising in mixed traffic platooning under actuator and communication delay. 104st Annual Meeting of the Transportation Research Board, Washington.

8.Long, K., Shi, H., Liu, J., Li, X. VLM-MPC: Vision Language Foundation Model (VLM)-Guided Model Predictive Controller (MPC) for Autonomous Driving. 104st Annual Meeting of the Transportation Research Board, Washington.

9.Ma, K., Zhou, H., Shi, H., Ma, C., Li, X. Understanding Autonomous Vehicle Behavior: A Soft-Margin Approach in Piecewise Linear Model. 104st Annual Meeting of the Transportation Research Board, Washington.         

10.Gan R., Shi, H*., Li, P., Wu, K., An, B., Li, L., Ma, J., Ma, C., Ran, B. Goal-based Neural Physics Vehicle Trajectory Prediction Model. 104st Annual Meeting of the Transportation Research Board, Washington.         

11.You, J., Shi, H*., Jiang, Z., Huang, Z., Gan, R., Wu, K., Cheng, X., Li X., Ran, B. V2X-VLM: End-to-End V2X Cooperative Autonomous Driving Through Large Vision-Language Models. 104st Annual Meeting of the Transportation Research Board, Washington.         

12.Huo, J., Liang, Z., Shi, H*., Ma, K., Li, X., Liu, Z. Vehicle Trajectory Tracking On Snowy Roads: A Model Predictive Control Method. 104st Annual Meeting of the Transportation Research Board, Washington.         

13.Wu, K., Shi, H*., Zhou, Y*., Ran, B. HYPERGRAPH-BASED MOTION GENERATION AND PLANNING WITH MULTI-MODAL INTERACTION RELATIONAL REASONING. 104st Annual Meeting of the Transportation Research Board, Washington.         

14.Long, K., Liang, Z., Shi, H., Shi, L., Chen, S., Li, X. Traffic Oscillations Mitigation With Physics Enhanced Residual Learning (Perl)-Based Predictive Control. 104st Annual Meeting of the Transportation Research Board, Washington.

15.Li, Z., Bao, Z., Meng, H., Shi, H*., Li Q., Yao, H., Li X. Interaction Dataset of Autonomous Vehicles with Traffic Lights and Signs. 104st Annual Meeting of the Transportation Research Board, Washington.

16.Tian, K#., Shi, H#., Zhou Y., Li, S. Physically Analyzable AI-Based Nonlinear Platoon Dynamics Modeling During Traffic Oscillation: A Koopman Approach. 104st Annual Meeting of the Transportation Research Board, Washington.

17.Di Y., Shi, H*., Zhang, W., Ding, H., Zheng X., Ran, B. Cooperative Route Guidance and Flow Control for Mixed Road Networks Comprising Expressway and Arterial Network. 104st Annual Meeting of the Transportation Research Board, Washington.

18.Di Y., Zhang W., Shi, H*., Ding H., Huo J., Ran, B. The Expressway Network Design Problem for Multiple Urban Subregions Based on the Macroscopic Fundamental Diagram. 104st Annual Meeting of the Transportation Research Board, Washington.

19.Di, Y., Zhang, W., You, J., Shi, H*., Li, H., Ding, H., Ran, B. A Cooperative Flow Control for Multiple Urban Regions Coupled with an Expressway Network. 104st Annual Meeting of the Transportation Research Board, Washington.

20.Long, K., Shi, H*, Sheng Z., Li, X*., Chen, S. ASCE International Conference on Transportation and Development 2024.

21.Shi H., Dong S., Wu Y., Li S., Zhou Y., Ran B. (2024). Generative Adversarial Network for Car Following Trajectory Generation and Anomaly Detection. Presented at 103st Annual Meeting of the Transportation Research Board, Washington. (Poster).

22.Wu K., Zhou Y., Shi H.*, Li X., Ran B. (2024). Graph-Based Interaction-Aware Multimodal 2D Vehicle Trajectory Prediction Using Diffusion Graph Convolutional Networks. Presented at 103st Annual Meeting of the Transportation Research Board, Washington. (Poster).

23.Long K., Sheng Z., Shi H.*, Li X.*, Chen S., Ahn S. (2024). A Physics Enhanced Residual Learning (PERL) Framework for Vehicle Trajectory Prediction. Presented at 103st Annual Meeting of the Transportation Research Board, Washington. (Poster).

24.Long K., Shi H.*, Chen Z., Liang Z., Li X.*, Souza F. (2024). Bi-scale Car-following Model Calibration for Corridor Based on Trajectory. Presented at 103st Annual Meeting of the Transportation Research Board, Washington. (Poster).

25.Ma K., Li X., Shi H., Ma C., Huang Z., Ghiasi A., Wang Q., Hourdos J., McHale G. A Novel Non-linear Car-following Model for Automated Vehicle: Development, Calibration, and Validation. Presented at 103st Annual Meeting of the Transportation Research Board, Washington. (Poster).

26.Shi, H. (2023). Mixed Platoon Control Strategy of Connected Automated Vehicles based on Physics-informed Deep Reinforcement Learning. INFORMS 2023. (Panel Speaker)

27.Shi, H. (2023). Mixed Platoon Control Strategy of Connected and Automated Vehicles Based on Physics-Informed Deep Reinforcement Learning. Young Faculty & Practitioner Workshop. ASCE International Conference on Transportation and Development 2023. 2438399. (Panel Speaker)

28.Chen T., Shi, H*, Parker, S. T., Vorhes, G., & Noyce, D. A. (2023). Conceptual Development for a Generalized Tribal Crash Safety Dashboard. ASCE International Conference on Transportation and Development 2023. 2252954. (Poster)

29.Chen T., Shi, H*, Parker, S. T., Vorhes, G., & Noyce, D. A. (2023). Conceptual Development for a Generalized Tribal Crash Safety Dashboard.102st Annual Meeting of the Transportation Research Board, Washington, D.C., 2023. TRBAM-23-02333. (Podium)

30.Shi, H., Chen, D., Zheng, N., Wang, X., Zhou, Y., & Ran, B. (2023). Distributed Connected Automated Vehicles Control under Real-time Aggregated Macroscopic Car-following Behavior Estimation based on Deep Reinforcement Learning. 102st Annual Meeting of the Transportation Research Board, Washington, D.C., 2023. TRBAM-23-02403. (Poster)

31.Chen T, Shi H*, Vorhes G, Parker, ST., Noyce, D. A. Tribal Crash Reporting System Improvements in Wisconsin. Presented at 101st Annual Meeting of the Transportation Research Board, Washington, D.C., 2022. TRBAM-22-02539. (Podium)

32.Shi, H., Nie, Q., Fu, S., Wang, X., Zhou, Y., & Ran, B. A Distributed Deep Reinforcement Learning Based Integrated Dynamic Bus Control System in a Connected Environment. Presented at 101st Annual Meeting of the Transportation Research Board, Washington, D.C., 2022. TRBAM-22-00882. (Poster)

33. Chen, T., Shi, H., Vorhes, G., Parker, S. T., & Noyce, D. A. Data and System Architecture Improvements for Statewide Crash Mapping and Analysis. Presented at 99th Annual Meeting of the Transportation Research Board, Washington, D.C., 2020. 20-05109. (Poster)

34.Shi, H., Zhou, Y., Wu, K., Wang, X., Lin, Y., & Ran, B. Connected automated vehicle cooperative control with a deep reinforcement learning approach in a mixed traffic environment. ASCE T&DI Technical Committee on Artificial Intelligence Student Competition. 2021. (Top 10 in Competition)


授权中美发明专利

1.Ran B., Cheng Y., Chen T., Yao Y., Wu K., Shi H., Li S., Shi K., Zhang Z., Ding F., Tan H., Wu Y., Dong S., Ye L., Li X. Autonomous Vehicle and Cloud Control (AVCC) System with Roadside Unit (RSU) Network: U.S. Patent Application 17/840, 249[P].

2.Ran B., Li S., Cheng Y., Chen T., Dong S., Shi K., Shi H., Li X. Distributed driving systems and methods for automated vehicles: U.S. Patent Application 16/996,684[P]. 2021.

3.Ran B., Chen T., Dong S., Cheng Y., Zhang M., Li X., Li S., Shi K., Shi H., Yao Y., Mo Y., Liu H., Wu K., Yi R. Function allocation for automated driving systems: U.S. Patent Application 17/328,625[P]. 2024.

4.Ran B., Cheng Y., Chen T., Yao Y., Wu K., Shi H., Li S., Shi K., Zhang Z., Ding F., Tan H., Wu Y., Dong S., Ye L., Li X. Autonomous Vehicle and Cloud Control System: 17/840,237[P]. 2024.

5.Ran B., Cheng Y., Chen T., Yao Y., Wu K., Shi H., Li S., Shi K., Zhang Z., Ding F., Tan H., Wu Y., Dong S., Ye L., Li X. Autonomous Vehicle (AV) Control System with Roadside Unit (RSU) Network: U.S.  Patent Application 17/840,243[P]. 2024.

6.Ran B., Mao P., Lu W., Yi Z., Li L., Cheng Y., Xu L., Zheng Y., Chen T., Shi H., Wu K. Function allocation for automated driving systems: U.S. Patent Application 17/499,283[P]. 2024.

7.Ran B., Cheng Y., Li S., Tian K., Chen T., Dong S., Shi K., Shi H., Li X., Distributed driving with flexible roadside resources: U.S. Patent Application 12,046,136[P]. 2024.

8.Ran B., Zheng Y., Wang C., Cheng Y., Yao Y., Wu K., Chen T., Shi H., Li S., Shi K., Zhang Z., Ding F., Tan H., Wu Y., Dong S., Ye L., Li X. Autonomous vehicle cloud system: U.S. Patent Application 18/227,541 [P]. 2025.

9.Ran B., Liang B., Zhao Y., Cheng Y., Yao Y., Wu K., Chen T., Shi H., Li S., Shi K., Zhang Z., Ding F., Tan H., Wu Y., Dong S., Ye L., Li X. AUTONOMOUS VEHICLE INTELLIGENT SYSTEM (AVIS). U.S. Patent Application 18/227,548 [P]. 2025.

10.Shi H & Liang X. A kind of AMT clutch friction plate rapid wear test system and method: CN Patent Application CN 105606362B. 2019.

11.Shi H, Wu Z, Zhang J, Han Y, Lan S, & Liang X. AMT clutch plate rapid wear testing system: CN Patent Application CN 205449493U. 2016.

12.Shi H, Wu Z, Han Y, Zhang J, Lan S, & Liang X. Automobile suspension system vibration energy recovering apparatus. CN 105252987A.

13.Shi H, Wu Z, Lan S, Han Y, Zhang J, & Liang X. Vehicle shock absorber vibration energy recovery unit: CN Patent Application CN 205123547U. 2016.

14.Shi H, Wu Z, Lan S, Zhang J, Han Y & Liang X. A kind of vehicle shock absorber vibration energy recovery device: CN Patent Application CN105226910A. 2016.

15.Shi H, Wu Z, Lan S, Zhang J, Han Y & Liang X. Car suspension system vibration energy recovery unit: CN Patent Application CN205112909U. 2016.

16.Ran B., Zhao K., Li H., Zhang M., Chen Z., Jiang J., Wu R., Zhang W., He S., Li S., Cheng Y., Shi H. Vehicle-mounted intelligent unit with fusion perception and collaborative decision function and control method: CN Patent Application CN 113954879B. 2023.

17.Nie Q., Zhang H., Ou J., Pjing, Yue P., Zhou Y., Shi H., Xiao X. Multi-strategy fusion control method for bus operation in intelligent network environment. CN115691196A. 2023.

18.Ran B., Li S., Cheng Y., Chen T., Dong S., Shi K., Shi H., Li X. Distributed driving system and method for automatically driving vehicle: CN Patent Application CN 114585876B. 2023.

19.Li S., Ran B., Cheng Y., Chen Z., He S., Rui Y., Li R., Gu H., Li L., Chen T., Li X., Dong S., Shi K., Shi H., Yao Y., Wu K., Zhang X. Intelligent roadside tool box: CN Patent Application CN 113496602B. 2023.

20.Ran B., Liang B., Lu W., Yi X., Rui Y., Kong L., Gong Y., Shi K., Cheng Y., Chen T., Shi H., He S., Yao Y., Wu K., Fu S. Virtual road configuration module: CN Patent Application CN114664116B. 2023.

21.Chen T, Shi H, and Yao Z. Gasoline engine starting method combining variable oil injection strategy with waste gas energy utilization: CN Patent Application CN 111550322B. 2022.

22.Chen T, Yao Z, Shi H. Method for improving cold start combustion of gasoline engine with variable residual waste gas rate: CN Patent Application CN 111550315B. 2022.

23.Ran B., Chen T., Li S., Cheng Y., Li L., Zhou Z., He S., Li X., Dong S., Yao Y., Shi K., Shi H., Wu K., Fu S. Collaborative autopilot system. CN 117087695A. 2023.


标准及建设指南

1.车路协同自动驾驶系统版本建设指南

2.车路协同自动驾驶技术发展路线图研究报告


获奖及荣誉

·2024,国家自然基金委优秀青年基金(海外)

·2023,上海市白玉兰人才计划(海外)

·2023,第一届Onsite自动驾驶算法挑战赛-高速路赛第三名(作为指导教师带队)

·2023,威斯康辛研究资助竞赛奖

·2022,威斯康辛智能交通协会奖

·2021,IEEE“塑造智能交通未来”一等奖

·2017,天津大学优秀毕业生


参与项目

·Rural Autonomous Vehicle Research Program. US. DOT. (15 million. Lead to write the proposal)

·Analysis, Modeling, and Simulation (AMS) Tools for Vehicle Automation. FHWA. Project Manager.

·Realistic Autonomous Vehicle Behavior Investigation for Stakeholder Empowerment. FHWA.

·CPS: Small: NSF-DST: Turning “Tragedy of the Commons (ToC)” into “Emergent Cooperative Behavior (ECB)” for Automated Vehicles at Intersections with Meta-Learning.

·WisTransPortal Maintenance, Planning, and Enhancements: MSN215169, with Wisconsin Department of Transportation and Federal Highway Administration, $475,000 (Research Assistant)

·Wisconsin Statewide Crash Mapping and Analysis Phase 5: MSN217992, with Wisconsin Department of Transportation, $361,632 (Research Assistant)

·Wisconsin DOT TMC Software Phase 4 - NG ATMS Stage 2 Engineering Support: MSN219900, with Wisconsin Department of Transportation, $300,000 (Research Assistant)

·WisTransPortal Maintenance, Planning, and Enhancements: MSN231699, with Wisconsin Department of Transportation, $525,000 (Research Assistant)

·Snow Plow Route Optimization: MSN237025, with Wisconsin Department of Transportation, $75,000 (Research Assistant)

·WisTransPortal Maintenance, Planning, and Enhancements: MSN252342, with Wisconsin Department of Transportation, $515,000 (Research Assistant)

·WisTransPortal Maintenance, Planning, and Upgrades: MSN267552, with Wisconsin Department of Transportation, $515,000 (Research Assistant)

·Wisconsin DOT ATMS Systems Engineering Support: MSN268295, with Wisconsin Department of Transportation, $35,000 (Research Assistant)

·Wisconsin TRCC Traffic Records Data Warehouse: MSN276255, with Wisconsin Department of Transportation and National Highway Traffic Safety Administration, $120,000 (Research Assistant)

·Cooperative R&D of Bus Operation Robust Control System Based on Accurate Information of Computational Vision, International Science and Technology Cooperation Project of Jiangsu Provincial Department of Science and Technology, June 2020 - December 2022, 2.27 Million RMB (Participant). Conduct research.

·PFI-DI Gasoline Engine Performance Research, a Cooperative Project of Tianjin University and United Automotive Electronics Co., Ltd. (Project Assistant).


学术兼职

·Electronics 期刊 (Q2) 首席客座编辑. Special Issue: Advanced Control Technologies for Next-Generation Autonomous Vehicles

·国际会议ITFT 2024程序委员会委员

·世界交通运输大会(WTC)智能云管云控、智能网联与车路协同控制、CAV政策法规等技术委员会国际委员

·担任Transportation Research Part B\C\E、IEEE T-ITS、IEEE TKDE、AAP等三十余个国际知名期刊和会议审稿人


招生信息

每年招收交通、车辆、计算机、数学等学科背景的硕博士。欢迎对自动驾驶、智能交通、AI、人机交互等方向感兴趣的同学报考。导师可推荐国外一流学府学习交流工作机会。

电话:021-69583650  管理员邮箱:2015qgy@tongji.edu.cn  
地址:上海市曹安公路4800号同济大学交通运输工程学院A440  邮编:201804

Creative Commons License TOPS课题组 页面浏览465,829次/访客70,123人次